
Sari Sandbox: A Virtual Retail Store Environment for Embodied AI Agents

Janika Deborah Gajo1, Gerarld Paul Merales1, Jerome Escarcha1,
Brenden Ashley Molina1, Gian Nartea1, Emmanuel G. Maminta2,

Juan Carlos Roldan2, Rowel O. Atienza1,2
1EEEI, University of the Philippines, Diliman, Quezon City

2AI Graduate Program, University of the Philippines, Diliman, Quezon City
jbgajo@up.edu.ph, gmmerales@up.edu.ph, jeescarcha@up.edu.ph

bqmolina@up.edu.ph, gdnartea@up.edu.ph, emmanuel.maminta@eee.upd.edu.ph

jtroldan@up.edu.ph, rowel@eee.upd.edu.ph

Figure 1. Overview of our virtual retail environment for embodied AI and human benchmarking. Top row: Photorealistic, high-fidelity
3D product models (left) and their randomized placement within semantically grouped categories (right). Middle row: Three store layouts
and key features such as a functional checkout, dynamic labels (price, expiration), interactable products and elements, teleportation system,
VR support, and a Python API for agents. Bottom row: Human participants in VR (left) perform shopping tasks (e.g., picking, inspecting,
checkout, navigation), with optional tunneling vignette. An embodied agent (right) completes comparable tasks for benchmarking.

Abstract

We present Sari Sandbox, a high-fidelity, photorealistic
3D retail store simulation for benchmarking embodied
agents against human performance in shopping tasks.
Addressing a gap in retail-specific sim environments for
embodied agent training, Sari Sandbox features over 250
interactive grocery items across three store configurations,
controlled via an API. It supports both virtual reality
(VR) for human interaction and a vision language model
(VLM)-powered embodied agent. We also introduce

SariBench, a dataset of annotated human demonstrations
across varied task difficulties. Our sandbox enables
embodied agents to navigate, inspect, and manipulate
retail items, providing baselines against human perfor-
mance. We conclude with benchmarks, performance
analysis, and recommendations for enhancing realism
and scalability. The source code can be accessed via
https://github.com/upeee/sari-sandbox-env.



1. Introduction
The demand for understanding retail behaviors is rapidly
evolving. Paolanti et al. [1] developed an RGB-D-based
deep learning system for analyzing shopper movement,
shelf interactions, and re-identification, allowing store-level
behavioral insights. While such systems are valuable for ob-
serving real human behavior, there is a growing interest in
studying these phenomena within photorealistic simulation
environments that support automated agents. These envi-
ronments enables us to systematically test hypotheses about
product selection, navigation, and layout design—on-scale
and under controlled conditions. For example, NVIDIA’s
Omniverse is a powerful platform used by popular retailers
like Kroger [2] and Lowe’s [3] to construct digital twins of
their respective stores. Simulation environments are a great
way to enable scalable, cost-effective and realistic evalua-
tions of agents performing these complex tasks [4, 5].

Specialist embodied agents in retail settings are trained
in these specialized simulation platforms. In Lowe’s case,
they created an interactive Omniverse replica of a home im-
provement store, where retail employees operate augmented
reality (AR) headsets to overlay the digital twin in the phys-
ical store. Several similar ideas about robotics and digital
twin systems proliferate in the Future Convenience Store
Challenge (FCSC) at the World Robot Summit [6]. FCSC
proposes tasks for the acquisition and placement of items in
a custom retail store layout. To this end, the organizers of
this event have even exposed Gazebo/ROS packages for the
virtual store layout and CAD-based models for these tasks.

Indoor navigation simulators are mainly focused on do-
mestic environments, which typically refer to household
settings such as kitchens, bedrooms, and living rooms [7],
as seen in Habitat [8], AI2Thor [9], Matterport3D [10] and
ThreeDWorld [11]. Little work is done on embodied agent
simulation for retail activities, product and shelf stocking,
and grocery store layout. We note that the tasks exposed
by the FCSC [12] include restocking of items and store ren-
ovation. In this work, we propose exploring sim environ-
ments modeling tasks such as more complex item selection
for checkout and product comparison with a more diverse
product set. To accomplish these, we introduce the follow-
ing contributions.
• Sari Sandbox is a virtual retail environment for devel-

oping and evaluating embodied agents. Modeled after
small convenience stores, it features interactive 3D lay-
outs, photorealistic rendering of 250 diverse products,
and three distinct store layouts based on surveys of real
local configurations.

• We provide a Python API for agent control and data col-
lection within the Sari Sandbox environment.

• We publish SariBench, a benchmark of retail tasks per-
formed in the Sari Sandbox environment plus human
demonstrations of these tasks using VR interaction with

the Sari Sandbox, as a baseline for testing embodied agent
performance on the aforementioned tasks.

• Finally, we design an agentic AI architecture to address
the easy tasks in the SariBench. This embodied agent
leverages off-the-shelf proprietary and open-source mod-
els, employing a straightforward architecture and toolset
without requiring any fine-tuning. The discussion can be
found in the Supplementary Material.
The next sections cover related virtual store simulators

and agent designs, detail the Sari Sandbox environment’s
design and benchmarks, present performance profiling and
comparisons between humans and agents, and conclude
with recommendations for future work. An overview of the
environment is shown in Figure 1.

2. Review of related work
2.1. Embodied retail store simulators

Table 1. Comparison of visual navigation datasets using RGB
sensor data. Notably, these benchmarks primarily focus on do-
mains other than retail, highlighting a research gap (Room-to-
Room: household navigation; ION & ALFRED: household tasks;
HumanoidBench: humanoid locomotion and manipulation).

Benchmark dataset Size Simulator
Room-to-Room [13] 90 scenes Matterport3D [10]
ION [14] 600 scenes AI2-THOR [9]
HumanoidBench [15] 27 tasks MuJoCo [16]
ALFRED [17] 120 scenes AI2-THOR [9]

Embodied agent simulators provide an avenue for AI to
be trained at low cost and with minimal risks, while still al-
lowing for complex, interactive learning experiences. The
primary goal of our work is to establish an environment
that exposes high-fidelity, physically accurate, and photore-
alistic interactions. Several simulators like Meta’s Habitat-
Sim [8], Matterport3D-Simulator [10], Isaac Sim [18] pow-
ered by NVIDIA Omniverse [19], iGibson [20, 21], and
AI2Thor [9] have been widely used to build benchmarks
for visual exploration and diverse embodied tasks in virtual
space. As detailed in Table 1, these prominent benchmark
datasets leverage such simulators to focus on contexts like
household navigation, general manipulation, or locomotion.
A survey on sim environments [7] outlines how such envi-
ronments focusing on goal-driven navigation have slowly
progressed from basic navigation to tackling complex inter-
actions, predominantly in these non-retail settings. Another
survey on embodied agents [22] evaluated simulators us-
ing a set of features that serve as robust evaluation criteria,
including environment type, object complexity, physics fi-
delity, and interactivity. We adopted these criteria as a basis
for Sari Sandbox’s design, explicitly addressing the under-



explored domain of retail scenarios.
As outlined also from that survey [22], there are three

research tasks that provide a foundation for embodied agent
adaptation in unfamiliar environments. These are: vi-
sual exploration, wherein the embodied agent gathers data
about its environment through motion and perception; vi-
sual navigation refers to embodied agent navigation usu-
ally to achieve a goal; and embodied question answering,
wherein the embodied agent would be required to navigate
and answer questions. We expect to establish entry points
from our research into the three tasks laid above.

While existing embodied agent simulators are increas-
ingly sophisticated, they are not tailored for the operational
needs of retail. The prevalent focus on household or in-
dustrial settings limits their applicability for retail-specific
tasks like inventory stocking, product recognition, or dy-
namic shelf management. To address this gap, we introduce
Sari Sandbox, an environment designed specifically for de-
veloping and evaluating embodied agents in a retail context.

2.2. Embodied agents in virtual simulation

Aligning linguistic input with agent capabilities is crucial
for grounding language in embodied simulations. How-
ever, a persistent challenge is bridging the gap between a
language model’s semantic output and the spatial precision
needed for navigation. Geometric maps inherently offer
more structure for this than language-only observations, as
highlighted by Huang et al. (2023) [23]. Our work, sim-
ilar to LM-Nav [24], explores language-guided navigation
using off-the-shelf models. While LM-Nav targets physical
agents and our research focuses on agentic patterns in vir-
tual environments, both approaches grapple with translating
high-level language into precise, executable actions. What
distinguishes our work is the incorporation of visual inputs
alongside language.

The development of LLM-powered embodied agents
has shown immense potential in sandbox environments,
leveraging advanced reasoning and language abilities for
open-ended tasks [25]. Projects such as NVIDIA’s VOY-
AGER [26] and the proposed EMBODIED AGENT INTER-
FACE [27] provide further validation of their effectiveness.
A common framework adopted for such agents is ReAct
(Reason and Act) [28], whose core loop (thought → action
→ observation → refinement) effectively emulates human
problem-solving and is highly suitable for embodied tasks.
The adaptability of ReAct has been demonstrated in other
work, such as STATEACT, which extends it for the ALF-
WORLD household environment [29, 30]. A critical chal-
lenge for these LLM- or VLM-powered embodied agents
is their stateless nature, where each inference is an isolated
event, unlike human cognition which constantly integrates
memory. To overcome this, various approaches for explicit
memory modeling have been proposed, including cognitive

architectures like CoALA [31], which models procedural,
working, semantic, and episodic memory components. Fur-
thermore, memory writing operations [32] are commonly
used to manage and utilize these memories, often involv-
ing techniques like creating concise summaries of immedi-
ate surroundings [33] or informative recollections [34] for
grounding the agent in its environment.

3. Design

Sari Sandbox is a 3D retail environment designed for evalu-
ating embodied agents in retail tasks. It features an API-
controlled avatar, three store layouts, 250 grocery prod-
ucts, and a self-checkout system. Each product is annotated
with rich ground truth data which includes category, name,
price, net weight, ingredients, nutritional facts, allergens,
and manufacturing origin that could enable precise evalua-
tion and data-driven experimentation. The environment is
performance-optimized without sacrificing texture fidelity,
built using Unity’s Universal Render Pipeline (URP) for its
balance of rendering quality, efficiency, and decal support
(crucial for dynamic on-product labels). Real-time physics
and interaction are handled via Unity’s default 3D engine,
NVIDIA PhysX.

3.1. Design requirements
In order to create the environment, the following design re-
quirements were taken into consideration:

• Environment performance. The environment should
perform at 60 frames-per-second well without compro-
mising its visual quality.

• Diverse products. The product diversity in the environ-
ment should closely resemble that of its real-world coun-
terpart. The textures used should be high-fidelity to allow
humans and AI to read the smallest text.

• API. Users and/or embodied agents should be able to con-
trol the avatar and the environment. In addition, they
shall also receive environment data such as avatar posi-
tion, avatar rotation, hand grip state, store layout, and ran-
domization seed.

• VR capabilities. The environment should be connected
and optimized for VR capabilities for human benchmark-
ing with minimal user fatigue and nausea.

3.2. Models
A total of 250 3D products were created for the environ-
ment. The products are based on real-life packaged goods
typically found in a convenience store. This number was
determined through an initial survey of several convenience
stores, from which we compiled a representative and di-
verse set of food products commonly encountered by con-
sumers. The selection was further limited to food products
with packaging that could be flattened for scanning using



(A) (B)

Figure 2. Expiration decal (A) projects the generated date onto the
product surface, while the barcode plane (B) is positioned above
for scanner detection.

a flatbed scanner. We then used open-source tools, namely
GIMP for preprocessing and Blender for 3D modeling.

Product meshes are classified into three types: simple,
complex, and deformable. Simple products (e.g., boxes) use
basic primitives; complex products (e.g., bottles) combine
multiple primitives; and deformable items (e.g., chip bags,
juice packs) require detailed modeling due to their non-rigid
structure. All products are simulated as rigid bodies. Addi-
tionally, they are categorized into 11 food types (Table 2).

Table 2. Product count per category, with a total of 250 products
across 11 categories.

Water 12 Soda 23 Juice 16 Dairy 20
Biscuit 50 Can 59 Chips 40 Nuts 15
Soup 6 Noodles 7 Liquor 2

As Figure 2 shows, barcodes and expiration date stamps
are integrated into Unity prefabs. These elements activate
dynamically when the avatar grabs a product and hide oth-
erwise, optimizing rendering and simulating realistic han-
dling—much like how shoppers inspect packages for dates.
Instead of scanning the barcode texture directly, a simu-
lated object detection method using ray casting is employed.
Rays target specific barcode planes in front of the actual bar-
code surface; the plane’s rotation confirms correct scanning
orientation. To keep expiration dates current and adaptable,
each product’s date is randomly generated at runtime. It
is then rendered using Unity’s URP decal system, which
allows it to conform to various mesh shapes and update
procedurally at the start of each session. Price tags, dis-
played along the front edge of each shelf (Figure 3), dy-
namically update to reflect the randomly placed products.
While placements vary, the system groups similar prod-
uct types, mirroring real-world grocery arrangements, with
aligned price tags.

To enhance space and time efficiency, 3D models un-
derwent optimization. Due to the scene’s numerous ob-
jects, only box colliders are used to minimize physics com-

Figure 3. Price tags displayed on the front edge of the shelf.

(A) (B)

Figure 4. Level of Detail (LOD) comparison between high (A)
versus low (B) quality.

putation time. High-resolution image textures, a common
source of excessive space consumption, were addressed by
using JPG format. We also implemented Level of Detail
(LOD), a standard game development technique where ob-
jects render with varying detail based on camera distance
(Figure 4). These optimized models are then arranged
within the environment to simulate real-world grocery store
product displays.

3.3. Environment
Several real-world small-scale retail stores were surveyed
to inform the design of the virtual environment, focusing
on store size, arrangement, and layout. From these obser-
vations, three distinct store layouts were recreated in the
environment, each featuring shelves and a self-checkout
counter. The corresponding top-down view for each store
layout is shown in Figure 5. Shelves are equipped with
overhead labels and are assigned either single or multiple
product categories, each with corresponding price tags (see
Figure 1). In addition to standard shelving, hinge door cab-
inets and sliding door cabinets were implemented to simu-
late real-world refrigeration units.

The self-checkout counter as shown in Figure 6 incorpo-
rates a touchscreen interface operable using the tip of the
avatar’s index finger. This interface allows users to view,
add, and remove products from their virtual shopping cart.
Dedicated buttons initiate the checkout process or modify
scanned items. A fixed barcode scanner on the counter sim-
ulates barcode reading by casting a ray toward the barcode
plane of a product, which is only successfully registered if
the orientation aligns correctly with the scanner.



(A) (B) (C)

Figure 5. The three store layouts: Store 1 (A), Store 2 (B), and
Store 3 (C), with the avatar’s starting position indicated.

(A) (B) (C)

Figure 6. Depicted are the self-checkout counter (A), barcode
scanner (B), and touchscreen (C).

To maintain performance in real-time rendering, frus-
tum culling and occlusion culling were implemented. These
techniques ensure that only visible objects within the cam-
era’s view are rendered (see Figure 7), significantly improv-
ing runtime efficiency in densely packed environments.

(A) (B)

Figure 7. Frustum and occlusion culling visualization: before (A)
and after (B) application.

To enhance the immersive experience and mitigate
common usability and comfort issues in VR, we imple-
mented several features based on established interaction
principles [35, 36]. These support naturalistic interaction,
user comfort, and consistency across experimental setups.
Specifically, we developed a hand interaction system for
grabbing, touching, placing, and throwing objects. We
also incorporated haptic feedback that triggers when users
hover over interactable objects, reinforcing interaction and
presence. To reduce cybersickness, a tunneling vignette
limits peripheral vision during movement. Finally, a tele-
portation system with a parabolic reticle was included to
support spatial navigation while addressing physical room-

scale and tracking limitations.

3.4. Avatar

Figure 8. Hand models for the avatar.

The user’s in-environment representation is an avatar,
comprising a camera and two hands within a character con-
troller. For avatar interaction, we adapted the hand models
shown in Figure 8. This configuration supports interaction
via either VR hardware or API-driven simulation. If no VR
headset is detected at startup, the camera is positioned at
an approximate adult human eye height of 1.6 meters, with
hands offset 0.5 meters downward to reflect a natural stand-
ing posture.

3.5. SariBench
Since this environment is specifically designed for retail
store tasks and to the best of our knowledge, there is no
existing studies have established a baseline for such scenar-
ios, we propose a set of tasks to serve as a benchmark for
evaluating embodied agent performance. These tasks and
their corresponding levels are detailed in Table 3.

Table 3. SariBench tasks: Baseline tasks of varying difficulty
along with the skills involved to execute them.

Difficulty Skills involved Example
Easy Perception, Navi-

gation, Manipula-
tion

Find and pick up
a box of cereal.

Average Perception, Navi-
gation, Manipula-
tion, Memory, Task
Execution

Pick up a bottle of
soda and scan at
checkout.

Difficult Perception, Nav-
igation, Manipu-
lation, Memory,
Task Execution,
Decision Making,
Comprehension

Which of these
two products
has lower
sugar content:
strawberry-
flavored biscuit
or chocolate-
flavored biscuit?
Scan the answer.

To create the SariBench dataset, we adapted the environ-
ment for VR headsets and recruited volunteers to perform



retail tasks. The dataset currently comprises 100 videos of
participants completing these tasks. Besides screen record-
ings, we captured the following environmental data at 10
frames per second: global head position and rotation,
global hand position and rotation, grip state, and hov-
ered or held item. Twenty human participants tested the
environment, completing tasks selected from a curated pool
categorized by difficulty. Each participant received a brief-
ing on the data collection’s purpose, project background,
and specific data types collected. Participants had 15 min-
utes to familiarize themselves with VR controls in a play-
ground environment shown in Figure 9 to ensure that they
could navigate, manipulate objects, and feel comfortable in
the virtual space, following established best practices for
VR immersion [35]. Once acclimated, each participant was
assigned three easy, two average, and two hard tasks. Dur-
ing task execution, participants were encouraged to verbal-
ize their thought processes, which were recorded and later
transcribed. Figure 10 shows several participants using the
VR system to complete tasks for dataset collection.

Figure 9. The playground environment used to introduce the par-
ticipants to the VR controls.

Figure 10. Volunteers testing the Sari Sandbox.

3.6. API
The avatar and environment are controlled via a direct
Python API, designed for seamless integration with an

Client-side
API

Server-side
API

WebSocket Server

Sari Sandbox

Figure 11. Communication flow between client-side and server-
side APIs via WebSocket.

embodied agent. This API comprises a Python-based
client that sends JSON files containing functions for avatar
control, environment data retrieval, and simulation resets.
These JSON files are received and parsed by a C# (Unity’s
scripting language) server, which then executes the corre-
sponding actions within the Unity environment. Commu-
nication between the client and server is facilitated through
a WebSocket server, as illustrated in Figure 11. The API
exposes three primary function types: Agent Actions, Infor-
mation Gathering, and Store Manipulation. Table 4 lists all
available functions; translation (T) and rotation (R) param-
eters accept 3D vector inputs.

Table 4. Agent control API functions with full arguments. T:
translation. R: rotation.

Function Description
TransformAgent(T, R) Manipulates the agent’s

body or camera.
TransformHands(leftT,
leftR, rightT, rightR)

Transforms the left and right
hands.

ToggleLeftGrip() Toggles the left hand grip to
grab objects.

ToggleRightGrip() Toggles the right hand grip
to grab objects.

ToggleLeftPoke() Toggles the left hand’s poke
animation.

ToggleRightPoke() Toggles the right hand’s
poke animation.

RequestScreenshot() Captures the current camera
view.

Reset() Resets the environment to its
initial state.

4. Experiments and analysis
The environment was developed and executed on a desk-
top equipped with an Intel i7-8700 3.2GHz CPU, NVIDIA
GTX 1080 GPU, and 64 GB of RAM. A Meta Quest 2
VR headset was used for dataset collection. All results
and analyses presented in this paper were computed based
on these hardware specifications. For the embodied agent
evaluation, we used a paid API version of Gemini 2.5 Pro
(gemini-2.5-pro-preview-05-06) with reasoning
budget of 2048 tokens. The discussion about the design and
development process of the basic embodied agent is found
in the Supplementary Material.



4.1. Performance metrics
Using the Unity Profiler, we measured the frame process-
ing time over 300 frames. Average frames-per-second were
26.73 (Layout 1), 23.23 (Layout), and 35.14 (Layout 3).
Layout 3 exhibited the highest performance, followed by
Layout 1, then Layout 2. This performance variation stems
from differing store sizes, which impact the number of ob-
jects and, consequently, physics calculations during object
instantiation at startup, causing a processing time spike.

4.2. Texture fidelity
To assess texture fidelity, we utilized PaddleOCR [37], an
open-source model recognized for its robust performance
in multilingual and complex text recognition [38, 39]. We
evaluated PaddleOCR on product label text using precision,
recall, and character error rate (CER), achieving high accu-
racy due to the structured layout: Precision: 0.986, Recall:
0.943, CER: 0.014. However, OCR performance typically
degrades with rotated text, especially when vertical and hor-
izontal text coexist (see Supplementary Material). These
issues can be mitigated by image rotation or object manip-
ulation. The model also struggles with stylized text, such
as brand logos or decorative fonts. Therefore, embodied
agents’ reading pipelines must account for these limitations.

4.3. Human versus embodied agent evaluation
We assigned 108 tasks, across three difficulty levels and
randomized store layouts, to human participants, recording
their completion time and success rate. Table 5 shows easy
tasks were significantly faster, as they typically involved
only one item, while more items increased navigation time.
Surprisingly, average tasks took longer than difficult ones,
mainly due to participants’ unfamiliarity with the barcode
scanner and because not all difficult tasks required check-
out.

Table 5. Performance evaluation of human versus embodied agent
on the SariBench tasks based on average time to complete and
completion rate. Embodied agent evaluation is limited to easy
tasks. L1/L2/L3: Layout 1, Layout 2, Layout 3. HAT: Human av-
erage time in seconds. AAT: Embodied agent average time. HCR:
Human completion rate. ACR: Embodied agent completion rate.

Difficulty HAT ↓ HCR% ↑ AAT ↓ ACR% ↑
Easy-L1 47 88.88 780 68.63
Easy-L2 73 100.00 660 45.10
Easy-L3 61 93.33 420 33.33
Average-L1 158 87.50 - -
Average-L2 106 100.00 - -
Average-L3 84 100.00 - -
Difficult-L1 76 100.00 - -
Difficult-L2 136 100.00 - -
Difficult-L3 113 100.00 - -

Our findings highlight a critical disparity in easy task
performance: humans consistently outperformed the em-
bodied agent in efficiency and effectiveness. We evalu-
ated the embodied agent’s end-to-end task success by man-
ual visual inspection: success was task completion within
45 minutes; failure was exceeding this limit or if it enters
“mode collapse” (i.e., getting lost). The embodied agent’s
completion times were up to 16 times longer than humans’,
with success rates under 70% compared to human rates of-
ten near 100%. This substantial proficiency gap is partly
due to the VLM’s inherent computational overhead, where
text generation and inference time significantly prolong the
embodied agent’s task completion. Despite fully utilizing
the designed APIs, the embodied agent’s performance fell
short, indicating challenges with the VLM’s overall optimal
reasoning and decision-making for these embodied tasks.
The embodied agent’s Easy-L1 to L3 performance is a solv-
ability proof-of-concept for Sari Sandbox, not an optimized
benchmark. Harder task evaluations are future work, as our
current focus is the sandbox itself. While humans gener-
ally excelled, their performance was nuanced by factors like
perseverance and occasional carelessness, explaining slight
dips in completion rates (e.g., Easy-L1 at 88.88%). No-
tably, reported motion sickness among participants is a key
consideration; though not directly impacting metrics, this
VR response could affect user experience and engagement.
Future research should explore mitigation strategies to en-
hance comfort and data reliability.

4.4. Participant thought process flowcharts

Receive task

Identify object
based on criterion

Reason out likely
location of object

Found?

Grab object

Request
correct?

Done

Release object

ReasonMotion Reason + Motion

Approach location

Scan for object
using camera
movements

Evaluate and
manipulate object

to verify if
criteria is met

YES

YES

NO

NO

Figure 12. General thought process for easy tasks.

We include flowcharts illustrating the thought pro-
cesses of participants during object retrieval and checkout
tasks, derived from think-aloud protocols. The Easy Task
Flowchart (Figure 12, e.g., “Find and pick up a soda”) in-



Receive Task

Identify object
based on criterion

Reason out likely
location of object

Found?

Grab object

Request
correct?

Release object

ReasonMotion Reason + Motion

Approach location

Scan for object
using camera
movements

Evaluate and
manipulate object

to verify if
criteria is met

Approach checkout

Press start
button

Locate the
barcode

Orient
barcode

Scan and
pay item(s)

Done

YES

YES

NO

NO

Figure 13. General thought process for average tasks.

volves a loop of reasoning about the object’s location, scan-
ning, and verifying if it meets the criterion before grabbing
or releasing. The Average Task Flowchart (Figure 13, e.g.,
“Find Koko Krunch, check for artificial flavors, and scan it
if none are present”) adds interpretation and conditional ac-
tions. After verification, participants proceed to checkout,
orient the barcode, and complete the scan and payment.

In the Difficult Task Flowchart (Figure 14), partici-
pants first gather information by performing simpler sub-
tasks, then apply this knowledge to answer a more complex
query. Actions are categorized into Reason, Motion, and
Reason + Motion. Decision points often involve reassess-
ment and retries, revealing how humans manage uncertainty
and adapt strategies. Compound actions demonstrate how
participants mentally bundle related physical and cognitive
steps, while selectively recalling earlier information to sup-
port later goals which underscores the role of memory and
flexible planning in completing complex tasks. These di-
agrams show how humans integrate reasoning with action,
serving as useful models for hybrid agent design.

Receive Task

Identify object
based on criterion

Reason out likely
location of object

Found?

Grab object

Object
correct?

Take note of
relevant information

Sufficient
objects for

comparison?

Release object

ReasonMotion Reason + Motion

Approach location

Scan for object
using camera
movements

Evaluate and
Manipulate object

to verify if
criteria is met

Answer query
on objects

Checkout
query?

Approach checkout

Press start
button

Locate the
barcode

Orient
barcode

Scan and
pay item(s)

Done
Do desired

query

YES

YES

YES

NO

NO

NO

YES

Figure 14. General thought process for difficult tasks.

5. Conclusion and future work
We introduce Sari Sandbox, a synthetic grocery environ-
ment with 250 items for training embodied agents, and its
accompanying SariBench dataset, both serving as our prime
contributions. Sari Sandbox provides an API-driven action
set for varied task difficulties and uniquely incorporates hu-
man thought processes for benchmarking via SariBench’s
captured tasks and human demonstrations. Future efforts
will focus on optimizing performance to a stable 60 FPS on
mid-range desktops, expanding the dataset with dynamic
additions, and enhancing realism through deformable ob-
jects and mesh colliders. A critical focus is broadening
embodied agent evaluation across all SariBench difficul-
ties to design more sophisticated embodied agents with im-
proved navigation, perception, and manipulation, bridging
the human-agent performance gap. This includes dedi-
cated research into optimal VLM context engineering to
enhance reasoning and planning. We also plan to stream-
line dataset generation via automated annotations, update
store designs, and develop a user-friendly scene creation
tool for rapid prototyping and diverse real-world simula-
tions.

References
[1] M. Paolanti, R. Pietrini, A. Mancini, E. Frontoni, and

P. Zingaretti, “Deep understanding of shopper behaviours
and interactions using rgb-d vision,” Machine Vision and
Applications, vol. 31, no. 7, p. 66, 2020. [Online]. Available:



https://doi.org/10.1007/s00138-020-01118-w 2
[2] The Kroger Co. and NVIDIA Corporation, “Kroger

and nvidia to reinvent the shopping experience through
state-of-the-art, ai-enabled applications and services,” Press
release, NVIDIA Newsroom, Mar. 2022, describes a joint
AI lab and demonstration center using NVIDIA Omniverse
digital twins at Kroger HQ in Cincinnati. [Online].
Available: https://nvidianews.nvidia.com/news/kroger-and-
nvidia-to-reinvent-the-shopping-experience-through-state-
of-the-art-ai-enabled-applications-and-services 2

[3] Lowe’s Innovation Labs, “Store digital twin: Giving
associates “superpowers” to better serve customers,” Project
page, Lowe’s Innovation Labs website, Sep. 2022, developed
with NVIDIA Omniverse and Magic Leap 2; live in two
pilot stores; includes AR restocking support, X-ray
vision, and in-store simulation tools. [Online]. Available:
http://lowesinnovationlabs.com/projects/store-digital-twin 2

[4] A. Afzal, D. S. Katz, C. Le Goues, and C. S. Timperley,
“A study on the challenges of using robotics simulators
for testing,” arXiv preprint arXiv:2004.07368, Apr. 2020,
survey of 82 robotics developers, identifying 10 major
barriers to simulation use in testing and CI pipelines.
[Online]. Available: https://arxiv.org/abs/2004.07368 2

[5] S. M. Kargar, B. Yordanov, C. Harvey, and A. Asadipour,
“Emerging trends in realistic robotic simulations: A
comprehensive systematic literature review,” IEEE Ac-
cess, vol. 12, pp. 1–26, May 2024, systematic review
of ROS-enabled simulators, game-engine platforms, and
AI-enhanced realistic scenario replication. [Online]. Avail-
able: https://ieeexplore.ieee.org/document/10538106 2

[6] World Robot Summit Executive Committee, “Future
Convenience Store Challenge 2024 – Post-Event Report,”
INTEX Osaka, November 13–15, 2024, 2024, includes
online rulebook and Gazebo models. [Online]. Available:
https://worldrobotsummit.org/en/wrs2025/fcsc/ 2

[7] L. H. K. Wong, X. Kang, K. Bai, and J. Zhang, “A survey of
robotic navigation and manipulation with physics simulators
in the era of embodied ai,” arXiv preprint arXiv:2505.01458,
2025. 2

[8] X. Puig, E. Undersander, A. Szot, M. Dallaire Côté, T.-Y.
Yang, R. Partsey, R. Desai, A. W. Clegg, M. Hlaváč, S. Y.
Min, V. Vondruš, T. Gervet, V.-P. Bergès, J. M. Turner,
O. Maksymets, Z. Kira, M. Kalakrishnan, J. Malik, D. S.
Chaplot, U. Jain, D. Batra, A. Rai, and R. Mottaghi, “Habi-
tat 3.0: A co-habitat for humans, avatars and robots,” 2023.
2

[9] E. Kolve, R. Mottaghi, W. Han, E. VanderBilt, L. Weihs,
A. Herrasti, M. Deitke, K. Ehsani, D. Gordon, Y. Zhu,
A. Kembhavi, A. Gupta, and A. Farhadi, “Ai2-thor: An
interactive 3d environment for visual ai,” arXiv preprint
arXiv:1712.05474, Dec. 2017, published Dec 14, 2017. 2

[10] A. Chang, A. Dai, T. Funkhouser, M. Halber, M. Nießner,
M. Savva, S. Song, A. Zeng, and Y. Zhang, “Matter-
port3d: Learning from rgb-d data in indoor environments,”
in Proceedings of the International Conference on 3D Vision
(3DV). IEEE, Oct. 2017, pp. 667–676. 2

[11] C. Gan, J. Schwartz, S. Alter, D. Mrowca, M. Schrimpf,
J. Traer, J. De Freitas, J. Kubilius, A. Bhandwaldar,

N. Haber, M. Sano, K. Kim, E. Wang, M. Lingelbach,
A. Curtis, K. Feigelis, D. M. Bear, D. Gutfreund, D. Cox,
A. Torralba, J. J. DiCarlo, J. B. Tenenbaum, J. H. McDer-
mott, and D. L. K. Yamins, “Threedworld: A platform for in-
teractive multi-modal physical simulation,” in NeurIPS 2021
Datasets and Benchmarks Track, Dec. 2021. 2

[12] “Future convenience store challenge (fcsc), world robot
summit 2025,” https://worldrobotsummit.org/en/wrs2025/
fcsc/fcsc2024/, World Robot Summit Executive Committee
and METI, July 2025, competition stages held November
13–15, 2024 (INTEX Osaka) and July 13–19, 2025
(EXPO Center, Osaka). [Online]. Available: https://
worldrobotsummit.org/en/wrs2025/fcsc/fcsc2024/ 2

[13] A. Ku, P. Anderson, R. Patel, E. Ie, and J. Baldridge, “Room-
across-room: Multilingual vision-and-language navigation
with dense spatiotemporal grounding,” in Proceedings of
the 2020 Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), 2020, pp. 4392–4412. 2

[14] W. Li, X. Song, Y. Bai, S. Zhang, and S. Jiang, “Ion:
Instance-level object navigation,” in Proceedings of the 29th
ACM international conference on multimedia, 2021, pp.
4343–4352. 2

[15] C. Sferrazza, D.-M. Huang, X. Lin, Y. Lee, and P. Abbeel,
“Humanoidbench: Simulated humanoid benchmark for
whole-body locomotion and manipulation,” arXiv preprint
arXiv:2403.10506, 2024. 2

[16] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics en-
gine for model-based control,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2012,
pp. 5026–5033. 2

[17] M. Shridhar, J. Thomason, D. Gordon, Y. Bisk, W. Han,
R. Mottaghi, L. Zettlemoyer, and D. Fox, “Alfred: A bench-
mark for interpreting grounded instructions for everyday
tasks,” in Proceedings of the IEEE/CVF conference on com-
puter vision and pattern recognition, 2020, pp. 10 740–
10 749. 2

[18] NVIDIA, “Isaac sim,” https://developer.nvidia.com/isaac/
sim, n.d. 2

[19] ——, “Nvidia omniverse,” https://www.nvidia.com/en-us/
omniverse/, accessed: May 22, 2025. 2

[20] B. Shen, F. Xia, C. Li, R. Martı́n-Martı́n, L. Fan, G. Wang,
C. Pérez-D’Arpino, S. Buch, S. Srivastava, L. P. Tchapmi,
M. E. Tchapmi, K. Vainio, J. Wong, L. Fei-Fei, and
S. Savarese, “igibson 1.0: a simulation environment for in-
teractive tasks in large realistic scenes,” in Proceedings of
the IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 2021, pp. 7520–7527. 2

[21] C. Li, F. Xia, R. Martı́n-Martı́n, M. Lingelbach, S. Srivas-
tava, B. Shen, K. Vainio, C. Gokmen, G. Dharan, T. Jain,
A. Kurenkov, C. Liu, H. Gweon, J. Wu, L. Fei-Fei, and
S. Savarese, “igibson 2.0: Object-centric simulation for
robot learning of everyday household tasks,” in Proceedings
of the Conference on Robot Learning (CoRL). PMLR, 2021,
pp. 455–465. 2

[22] J. Duan, S. Yu, H. L. Tan, H. Zhu, and C. Tan, “A
survey of embodied ai: From simulators to research tasks,”
IEEE Transactions on Emerging Topics in Computational

https://doi.org/10.1007/s00138-020-01118-w
https://nvidianews.nvidia.com/news/kroger-and-nvidia-to-reinvent-the-shopping-experience-through-state-of-the-art-ai-enabled-applications-and-services
https://nvidianews.nvidia.com/news/kroger-and-nvidia-to-reinvent-the-shopping-experience-through-state-of-the-art-ai-enabled-applications-and-services
https://nvidianews.nvidia.com/news/kroger-and-nvidia-to-reinvent-the-shopping-experience-through-state-of-the-art-ai-enabled-applications-and-services
http://lowesinnovationlabs.com/projects/store-digital-twin
https://arxiv.org/abs/2004.07368
https://ieeexplore.ieee.org/document/10538106
https://worldrobotsummit.org/en/wrs2025/fcsc/
https://worldrobotsummit.org/en/wrs2025/fcsc/fcsc2024/
https://worldrobotsummit.org/en/wrs2025/fcsc/fcsc2024/
https://worldrobotsummit.org/en/wrs2025/fcsc/fcsc2024/
https://worldrobotsummit.org/en/wrs2025/fcsc/fcsc2024/
https://developer.nvidia.com/isaac/sim
https://developer.nvidia.com/isaac/sim
https://www.nvidia.com/en-us/omniverse/
https://www.nvidia.com/en-us/omniverse/


Intelligence, vol. 6, no. 2, pp. 230–244, 2022, accessed:
May 22, 2025. [Online]. Available: https://ieeexplore.ieee.
org/document/9687596 2, 3

[23] C. Huang, O. Mees, A. Zeng, and W. Burgard, “Visual lan-
guage maps for robot navigation,” in Proceedings of the
IEEE International Conference on Robotics and Automation
(ICRA), London, UK, 2023. 3

[24] D. Shah, B. Osinski, B. Ichter, and S. Levine, “LM-
nav: Robotic navigation with large pre-trained models of
language, vision, and action,” in 6th Annual Conference
on Robot Learning, 2022. [Online]. Available: https:
//openreview.net/forum?id=UW5A3SweAH 3

[25] B. Liu, X. Li, J. Zhang, J. Wang, T. He, S. Hong, H. Liu,
S. Zhang, K. Song, K. Zhu et al., “Advances and challenges
in foundation agents: From brain-inspired intelligence to
evolutionary, collaborative, and safe systems,” arXiv preprint
arXiv:2504.01990, 2025. 3

[26] G. Wang, Y. Xie, Y. Jiang, A. Mandlekar, C. Xiao, Y. Zhu,
L. Fan, and A. Anandkumar, “Voyager: An open-ended em-
bodied agent with large language models,” arXiv preprint
arXiv:2305.16291, 2023. 3

[27] M. Li, S. Zhao, Q. Wang, K. Wang, Y. Zhou, S. Srivastava,
C. Gokmen, T. Lee, E. L. Li, R. Zhang et al., “Embodied
agent interface: Benchmarking llms for embodied decision
making,” Advances in Neural Information Processing Sys-
tems, vol. 37, pp. 100 428–100 534, 2024. 3

[28] S. Yao, J. Zhao, D. Yu, N. Du, I. Shafran, K. Narasimhan,
and Y. Cao, “React: Synergizing reasoning and acting in
language models,” in International Conference on Learning
Representations (ICLR), 2023. 3

[29] N. Rozanov and M. Rei, “Stateact: State tracking and rea-
soning for acting and planning with large language models,”
arXiv preprint arXiv:2410.02810, 2024. 3

[30] M. Shridhar, X. Yuan, M.-A. Côté, Y. Bisk, A. Trischler,
and M. Hausknecht, “Alfworld: Aligning text and embod-
ied environments for interactive learning,” arXiv preprint
arXiv:2010.03768, 2020. 3

[31] T. Sumers, S. Yao, K. Narasimhan, and T. Griffiths, “Cogni-
tive architectures for language agents,” Transactions on Ma-
chine Learning Research, 2023. 3

[32] Z. Zhang, X. Bo, C. Ma, R. Li, X. Chen, Q. Dai, J. Zhu,
Z. Dong, and J.-R. Wen, “A survey on the memory mecha-
nism of large language model based agents,” arXiv preprint
arXiv:2404.13501, 2024. 3

[33] W. Zhong, L. Guo, Q. Gao, H. Ye, and Y. Wang, “Mem-
orybank: Enhancing large language models with long-term
memory,” in Proceedings of the AAAI Conference on Artifi-
cial Intelligence, vol. 38, no. 17, 2024, pp. 19 724–19 731.
3

[34] A. Modarressi, A. Imani, M. Fayyaz, and H. Schütze, “Ret-
llm: Towards a general read-write memory for large lan-
guage models,” arXiv preprint arXiv:2305.14322, 2023. 3

[35] R. Atienza, R. Blonna, M. Tan, V. Tan, and A. Mora, “Vrex:
A framework for immersive virtual reality experiences,” in
2018 IEEE Region Ten Symposium (TENSYMP), 07 2018. 5,
6

[36] D. Calandra and F. Lamberti, “A testbed for studying cy-
bersickness and its mitigation in immersive virtual reality,”

IEEE transactions on visualization and computer graphics,
vol. PP, 08 2024. 5

[37] P. Authors, “Paddleocr, awesome multilingual ocr toolkits
based on paddlepaddle.” https://github.com/PaddlePaddle/
PaddleOCR, 2020. 7, 1, 4

[38] M. A. N. Hadi, M. Gul, M. Khan, G. N. Alwakid, and
N. Z. Jhanjhi, “Benchmarking performance analysis of opti-
cal character recognition techniques,” in 2024 26th Interna-
tional Multi-Topic Conference (INMIC), Karachi, Pakistan,
2024, pp. 1–6. 7

[39] S. A. Francis and M. Sangeetha, “A comparison study on op-
tical character recognition models in mathematical equations
and in any language,” Results in Control and Optimization,
vol. 18, p. 100532, 2025. 7

[40] P. Norvig and S. J. Russell, Artificial Intelligence: A Modern
Approach. Pearson, 2016. 1

[41] X. Yue, Y. Ni, K. Zhang, T. Zheng, R. Liu, G. Zhang,
S. Stevens, D. Jiang, W. Ren, Y. Sun et al., “Mmmu: A
massive multi-discipline multimodal understanding and rea-
soning benchmark for expert agi,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2024, pp. 9556–9567. 1

[42] G. Team, R. Anil et al., “Gemini: A family of
highly capable multimodal models,” 2025, arXiv preprint
arXiv:2312.11805. [Online]. Available: https://arxiv.org/
abs/2312.11805 1

[43] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for
the heuristic determination of minimum cost paths,” IEEE
transactions on Systems Science and Cybernetics, vol. 4,
no. 2, pp. 100–107, 1968. 1

[44] L. Yang, B. Kang, Z. Huang, Z. Zhao, X. Xu, J. Feng, and
H. Zhao, “Depth anything v2,” Advances in Neural Informa-
tion Processing Systems, vol. 37, pp. 21 875–21 911, 2024.
4

https://ieeexplore.ieee.org/document/9687596
https://ieeexplore.ieee.org/document/9687596
https://openreview.net/forum?id=UW5A3SweAH
https://openreview.net/forum?id=UW5A3SweAH
https://github.com/PaddlePaddle/PaddleOCR
https://github.com/PaddlePaddle/PaddleOCR
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2312.11805


Sari Sandbox: A Virtual Retail Store Environment for Embodied AI Agents

Supplementary Material

S1. Texture fidelity

As discussed in Sec. 4.2, we evaluated texture fidelity us-
ing PaddleOCR [37]. While it performs well on structured
product labels, it exhibits limitations in more challenging
scenarios. Figure S1 and Figure S2 provide qualitative ex-
amples where OCR accuracy declines. Figure S1 presents
a case involving mixed horizontal and vertical text orienta-
tions, which often result in incorrect segmentation or recog-
nition. Figure S2 highlights the challenges posed by styl-
ized fonts and logo-like text, where decorative design el-
ements interfere with accurate character detection. These
examples encourages OCR-aware scene design and the po-
tential need for active viewpoint control in embodied agent
pipelines.

Figure S1. PaddleOCR failed in identifying the rotated text be-
cause majority is horizontal text.

S2. Embodied agent

An agent is an entity that perceives its environment through
sensors and acts upon it using actuators [40]. As illustrated
in Figure S3, the agent, a modular system, operates within
its environment (sandbox) through a continuous loop of per-
ception, cognition, and action to achieve a set goal. Upon
goal completion, it halts until a human provides a new di-
rective. This paradigm is powerful as it shifts from static
programming to a dynamic, interactive model where sys-
tems are both observers and actors.

For our agent’s cognitive engine, we required a VLM in-
stead of an LLM, incorporating visual sensory inputs. We
based our selection on the Massive Multi-discipline Mul-
timodal Understanding and Reasoning (MMMU) [41]. At
the time of evaluation, Gemini 2.5 Pro was state-of-the-art,
achieving a score of 84.0 on the MMMU validation set (us-

Figure S2. PaddleOCR failed in identifying stylized text of the
Moby Brand despite being able to identify texts in the same image.

Human SandboxAgent

Action

Feedback
STOP

Figure S3. The elementary concept of an autonomous agent.

ing its experimental Deep Think mode), nearing the human
expert benchmark of 88.6 [42].

In our sandbox, the agent faces two core challenges:
autonomous navigation and object manipulation, both vi-
tal for product search and retrieval. We adapted the ReAct
framework for our needs. To focus on core capabilities, we
simplified the embodied agent’s navigation and manipula-
tion; complex behaviors like multi-item handling or check-
out were excluded. We forego A* planning [43] as our em-
bodied agent lacks access to a pre-built grid-map, relying
solely on visual input during navigation. Our primary ob-
jective is not to develop a state-of-the-art agent, but rather
to construct a functional one that rigorously tests the prac-
ticality and usability of the APIs designed in Section 3.6
through basic item search and retrieval tasks.

Our embodied agent operates using the pattern in Fig-
ure S4, which is designed for both efficiency and con-
trol when processing a grocery task (e.g., “Find a healthy
snack”). Our key approach here is that the embodied



𝒕 = 𝑻

𝒕 = 𝟎

Assoc. 

Learning

“Grab a Kinder bueno”

Mode cue: Navigation

Context cue: Kinder 

bueno is a snack. 

Snacks are found in 

Shelf 5.

Planning

Planning: Snacks are in 

Shelf 5. On my left is 

Shelf 1. In navigation 

mode, I can move forward 

10 times and check other 

shelves.

{‘actions’: 

[move_forward], 

‘times’: [10]}

Sandbox

𝑺𝒕𝒂𝒕𝒆 Tools

Feedback

𝑨𝒄𝒕𝒊𝒐𝒏

𝑷𝒓𝒐𝒎𝒑𝒕

STOP

Semantic + 

Episodic 

Memory

Figure S4. An overview of our agentic pattern. The process begins with a prompt, initiating a continuous loop. In the initial associative
learning step, the embodied agent consults its semantic and episodic memory, and synthesizes its current state and the given task into
mode and context (M+C) cues. These cues are included as inputs for the planning step, where the VLM generates an action sequence.
This sequence, comprising elementary actions and potential tool calls, is executed within the sandbox. The loop then repeats with the new
state, continuing until the associative learning step issues a STOP command.

agent generates an action sequence—a chunk of related
commands—rather than a single action per cycle. This ap-
proach is highly effective for repetitive tasks such as gro-
cery shopping (e.g., “navigate to Shelf 1, search; navi-
gate to Shelf 2, search; navigate to Shelf 3, grasp”). This
pattern effectively manages such decomposed, sequential
steps. Furthermore, this design substantially offloads the
cognitive load from the VLM. The associative learning step
pre-processes and provides mode cues (e.g., indicating nav-
igation or manipulation) and context cues. This means
the planning step does not need to deliberate on these op-
erational states, streamlining its decision-making. Conse-
quently, this pattern makes debugging easier and provides
more robust control over the outputs.

The agentic loop operates through three key steps. First,
the associative learning step queries the sandbox for the
embodied agent’s current state (coordinates, visual input) at
each step. It then processes this state against the prompt to
generate two cues for the next stage: a mode cue and a con-
text cue. The mode cue switches the embodied agent’s op-
erational state between navigation and manipulation, con-
straining the VLM to specific symbolic actions for im-
proved reliability. The context cue provides recall infor-
mation from the embodied agent’s semantic and episodic
memory. Second, planning step takes this state informa-
tion, along with the mode cue, context cue, and available
tools (function-calling APIs), and passes them to the VLM,
which generates a structured action sequence. Finally, dur-

ing the execution step, an external parser translates this se-
quence into executable API calls dispatched to the sand-
box, yielding an observable result. The embodied agent
perceives this new state, and the loop repeats until the as-
sociative learning step issues a STOP command.

To overcome the stateless nature inherent in VLM-
powered embodied agents, our embodied agent explicitly
models memory, leveraging the four-part cognitive architec-
ture. This framework, managed within our agentic pattern,
comprises the following components: procedural mem-
ory which contains the embodied agent’s core rules and
skills, implemented as the system instructions provided to
the VLM; working memory which contains the immediate
interaction history, managed by caching and injecting con-
text within the VLM’s context window; semantic memory
which contains the factual knowledge about the environ-
ment; and episodic memory which contains the distilled
takeaways from the embodied agent’s own experiences. To
implement the semantic memory, we first created a base se-
mantic memory which is a text file containing the store lay-
out, product locations (e.g., “Shelf 1 contains cereals”), and
rudimentary directions from the embodied agent’s spawn
point to any shelf (mimicking natural instructions). Sim-
ilarly, the episodic memory is implemented as a text file,
which starts blank at the beginning of each task.

The semantic and episodic memories are managed by a
memory writing operation that occurs during the associa-
tive learning step. At each timestep, this module consults



both memory files. It uses the semantic memory to ground
the embodied agent in its environment. After action ex-
ecution, the associative learning step updates the episodic
memory by synthesizing a three-point reflection on the ac-
tion that had just been executed: a dense summary of what
occurred, what actions worked, and what to avoid in the fu-
ture. The key information recalled from both memories is
then encoded into the context and mode cues, and passed to
the planning step to reduce the cognitive load and enhance
context. It is important to note that while the associative
learning and planning steps use the same Gemini model re-
lease version, they function as distinct modules with differ-
ent system instructions.

S3. Actions and tools
Our embodied agent interacts with the Sari Sandbox en-
vironment through a defined set of actions, categorized
into distinct operational modes: navigation and manipula-
tion (Table S1). These actions enable precise control over
the embodied agent’s movement and interaction with ob-
jects within the simulated grocery store.

The navigation mode allows the agent to control its
body’s position and orientation. This includes fun-
damental actions such as move forward, which ad-
vances the agent by 0.1 units, and pan left and
pan right, which rotate the agent’s view horizontally
by 2.5-degree increments. While these appear as sin-
gle, high-level API calls, their underlying implementa-
tion involves iterative, atomic calls to the simulator’s core
API functions. For instance, move forward directly
invokes TransformAgent((0, 0, 0.1), (0, 0,
0)), allowing for controlled, fine-grained movement up
to a predefined unit limit. Similarly, pan left and
pan right are built upon TransformAgent((0, 0,
0), (0, -2.5, 0)) and TransformAgent((0,
0, 0), (0, +2.5, 0)), respectively, to control the
agent’s yaw rotation.

Table S1. Different modes of operation and their associated ac-
tions. Action descriptions: move forward to move the em-
bodied agent forward by 0.1 units in the sandbox. pan left
and pan right to pan left and right by 2.5 degrees, respec-
tively. center object on screen to center the embodied
agent’s body on the target object in the frame. retrieve item
to approach the target object, grab it with the embodied agent’s
hand, and inspect it. Navigation and manipulation invokves
TransformAgent and TransformHands, respectively.

Mode Actions

Navigation move forward, pan left,
pan right

Manipulation center object on screen,
retrieve item

The manipulation mode enables the agent to inter-
act directly with items in the environment. This in-
cludes actions like center object on screen and
retrieve item.

The center object on screen action leverages
Gemini 2.5 Pro for object detection. It uses visual inputs
(obtained via first-person point-of-view screenshot within
the sandbox) to calculate the target object’s bounding box.
The VLM’s perception output after calling loc object
tool, providing ymin, xmin, ymax, xmax coordinates, is
then translated into pixel coordinates. Based on the object’s
horizontal and vertical deviation from the screen center, the
agent directly invokes TransformAgent to perform pre-
cise yaw and pitch rotations, aligning its perspective with
the object.

The retrieve item action is a more complex, com-
pound behavior that orchestrates several steps:
• Depth estimation. The agent first moves generally to-

wards the detected target using visual input and esti-
mated depth via est depth tool. This often involves
move forward actions, which, as described, trans-
late to repeated TransformAgent((0, 0, 0.1),
(0, 0, 0)) calls.

• Fine-tuning orientation. It then adjusts its orientation to
face a cardinal direction for consistent alignment, again
utilizing TransformAgent for precise yaw control.

• Horizontal centering. The embodied agent performs
a strafe to center operation to precisely align it-
self with the object. This action calculates the horizontal
offset of the target object’s bounding box from the im-
age center. It then converts this pixel offset into a re-
quired linear movement in world units. Subsequently,
strafe to center executes a series of granular calls
which correspond to TransformAgent((+0.1, 0,
0), (0, 0, 0)) or TransformAgent((-0.1,
0, 0), (0, 0, 0)) to incrementally shift the em-
bodied agent’s body sideways until the object is horizon-
tally centered in its view.

• Final approach and interaction. The embodied agent
moves to the item’s immediate vicinity and executes the
physical grab and read operation. This critical step
involves a choreographed series of atomic hand move-
ments directly implemented via the TransformHands
API. Specifically, the agent can extend its hands for-
ward by adjusting their Z-axis position, pull them back-
ward for Z-axis retraction, or raise and lower them to
control their Y-axis position. Rotational actions, also
achieved by TransformHands, allow for precise ma-
nipulation of the hand’s yaw rotation. Once positioned,
the agent can grasp the item using ToggleLeftGrip
API calls to simulate a grip. Following the grab,
the grab and read item operation initiates a new
screenshot and then processes this image using an Opti-



cal Character Recognition (OCR) tool via ocr object
to extract any text present on the item, thereby simulat-
ing visual inspection. These primitive hand and vision-
based interactions are crucial for the embodied agent to
accurately reach, grasp, and inspect the target item, even
though they are not exposed as high-level API actions in
the table.
The VLM serves as the cognitive engine for these ac-

tions. It processes visual information and textual prompts
to determine the appropriate sequence of actions and their
parameters. Tools found in Table S2 are integral to the em-
bodied agent’s perception and decision-making loop, par-
ticularly for tasks requiring object identification and precise
interaction. The structured nature of these higher-level ac-
tions, built upon the fundamental TransformAgent and
TransformHands APIs, ensures the embodied agent can
perform complex grocery tasks by decomposing them into
manageable, executable steps.

Table S2. Tools that are part of an elementary action and their
corresponding purposes.

Tool Purpose

loc object Uses Gemini 2.5 Pro’s object local-
ization capability to output bounding
box coordinates of a specified item or
item of interest. Format: [ymin,
xmin, ymax, xmax]. Part of:
center object on screen.

ocr object Uses PaddleOCR [37] for item inspec-
tion via optical character recognition
(OCR). Part of: retrieve item.

est depth Uses Depth-Anything-V2 [44] Small
for computing the distance between
target object and embodied agent
before item inspection. Part of:
retrieve item.


	Introduction
	Review of related work
	Embodied retail store simulators
	Embodied agents in virtual simulation

	Design
	Design requirements
	Models
	Environment
	Avatar
	SariBench
	API

	Experiments and analysis
	Performance metrics
	Texture fidelity
	Human versus embodied agent evaluation
	Participant thought process flowcharts

	Conclusion and future work
	Texture fidelity
	Embodied agent
	Actions and tools


